Study may elucidate metformin's potential role in longevity through DNA methylation

A new research paper was published in Aging (listed as "Aging (Albany NY)" by MEDLINE/PubMed and "Aging-US" by Web of Science) Volume 15, Issue 3, entitled, "Metformin use history and genome-wide DNA methylation profile: potential molecular mechanism for aging and longevity."

Metformin, a commonly prescribed anti-diabetic medication, has repeatedly been shown to hinder aging in pre-clinical models and to be associated with lower mortality for humans. It is, however, not well understood how metformin can potentially prolong lifespan from a biological standpoint.

Omics eBook

Compilation of the top interviews, articles, and news in the last year.
Download a free copy

In this recent study, researchers Pedro S. Marra, Takehiko Yamanashi, Kaitlyn J. Crutchley, Nadia E. Wahba, Zoe-Ella M. Anderson, Manisha Modukuri, Gloria Chang, Tammy Tran, Masaaki Iwata, Hyunkeun Ryan Cho, and Gen Shinozaki from Stanford University School of Medicine, University of Iowa, Tottori University Faculty of Medicine, University of Nebraska Medical Center College of Medicine, and Oregon Health and Science University School of Medicine hypothesized that metformin's potential mechanism of action for longevity is through its epigenetic modifications.

"To test our hypothesis, we conducted a post-hoc analysis of available genome-wide DNA methylation (DNAm) data obtained from whole blood collected from inpatients with and without a history of metformin use."

The researchers assessed the methylation profile of 171 patients (first run) and only among 63 diabetic patients (second run) and compared the DNAm rates between metformin users and nonusers. Enrichment analysis from the Kyoto Encyclopedia of Genes and Genome (KEGG) showed pathways relevant to metformin's mechanism of action, such as longevity, AMPK and inflammatory pathways. They also identified several pathways related to delirium whose risk factor is aging. Moreover, top hits from the Gene Ontology (GO) included HIF-1α pathways. However, no individual CpG site showed genome-wide statistical significance (p < 5E-08).

"This study may elucidate metformin's potential role in longevity through epigenetic modifications and other possible mechanisms of action."

Source:

Aging-US

Journal reference:

Marra, P.S., et al. (2023) Metformin use history and genome-wide DNA methylation profile: potential molecular mechanism for aging and longevity. Aging-US. doi.org/10.18632/aging.204498.

Posted in: Molecular & Structural Biology | Cell Biology | Genomics

Tags: Aging, Blood, Cancer, covid-19, CpG, Delirium, Diabetes, DNA, DNA Methylation, Epigenetics, Gene, Genes, Genome, Gerontology, Inflammation, Medicine, Metformin, Model Organisms, Molecular Biology, Mortality, Pathology, Research, Syndrome

Comments (0)

Source: Read Full Article