Pockets of resistance found in survey of pathogen diversity

Unparalleled insights into the secret life of Streptococcus pneumoniae, the bacterium responsible for hundreds of thousands of infant deaths each year, have been revealed by new research from the Wellcome Sanger Institute, the University of Oxford, the Shoklo Malaria Research Unit and Imperial College London.

The study, published today (10 October) in Nature Microbiology, details the genetic diversity of the pathogen within individual infants, including hidden multidrug-resistant and virulent strains. The findings suggest that the detection of such resistant variants is only possible using a population deep sequencing (PDS) approach and that their presence may be due to individuals being treated with antibiotics.

The research highlights the potential for PDS to improve our understanding of pathogens like S. pneumoniae and to inform treatment strategies when antimicrobial resistance is a concern.

Streptococcus pneumoniae, also known as the pneumococcus, is a bacterial pathogen that causes diseases ranging from ear infections through to pneumonia, septicaemia and meningitis. It is responsible for around nine million global infections annually, with elderly adults and children particularly susceptible. More than 300,000 children die from pneumococcal infection each year, mainly in low- and middle-income countries (LMICs).

Not all individuals colonised by S. pneumoniae will become ill. The bacteriumis carried without symptoms by up to 60 per cent of children and by a smaller percentage of adults. Children are generally colonised by common strains, and this allows our immune systems to recognise and guard against them. As adults, we tend to be colonised by rarer strains that we may not have encountered before.

In this new study, researchers at the Wellcome Sanger Institute, the University of Oxford and Imperial College London set out to document the diversity of S. pneumoniae in children and adults.

Source: Read Full Article